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Abstract

We establish analogs of the Hausdorff-Young and Riesz—Kolmogorov inequalities and the norm
estimates for the Kontorovich—-Lebedev transformation and the corresponding convolution. These
classical inequalities are related to the norms of the Fourier convolution and the Hilbert transform in
L, spaces, X p < oo. Boundedness properties of the Kontorovich—Lebedev transform and its convo-
lution operator are investigated. In certain cases the least values of the norm constants are evaluated.
Finally, it is conjectured that the norm of the Kontorovich-Lebedev opefgtor L ,(R+; x dx) —

Lp(Ry;x sinhnxdx), 2<p<oo

o
Kif[f]:/ Ki:(x)f(x)dx, te€R4
0

is equal to 1" . It confirms, for instance, by the known Plancherel-type theorem for this transform

7
whenp = 2.
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1. Introduction and preliminary results
Let f, h be complex-valued measurable functions defineRon= (0, co). The purpose

of this paper is to obtain an analog of the Hausdorff—Young inequi@jtynd the norm
estimates for the following convolution operator (&,7,11])

1 e¢} ee} _l(x142+y2+&)
(f*h)(x)zﬂfo /o e U T fwyh(y) dudy, x> 0. (1.1)

Our aim is also to establish an analog of the Riesz—Kolmogorov ineqya]itior the
Kontorovich—Lebedev transformati¢s,7,8,11]

Ki[f]= /oo Kiz(x)f(x)dx, 1>0, 1.2)
0

where K;.(x) is the modified Bessel function of the second k[&§l with respect to the
pure imaginary index = it. We will consider these operators in appropriate Lebesgue
spaces. In particular, the convolution operator (1.1) is well defined in the Banach ring
L*(R4) = L1(Ry; Ky(x) dx), o € R (se€]11,7]), i.e. the space of all summable functions

f : Ry — C with respect to the measurg, (x) dx for which

o0
N xRy = /o [ f ()| Ky(x)dx (1.3)
is finite. Generally, the modified Bessel functi&i(z) satisfies the differential equation
d?u du
2 2, .2
Zd_Z2+Zd_Z_(Z +vHu =0 (1.4)

for which it is the solution that remains boundedzasnds to infinity on the real line. It has
the asymptotic behaviour (cf. [1, relations (9.6.8), (9.6.9), (9.7.2)])

Ky(2) = (%)me—ﬁn 0(1/2)]. 2 o0 (1.5)
and near the origin

Ky(z) =0 (z“Rev‘) , z—0, (1.6)

Ko(z) =—logz+0(1), z—0. 1.7

Moreover, it can be defined by the following integral representations [5, (6-1-2), 4, vol. I,
relation (2.4.18.4)]

o0
Ky (x) =/ e €SN coshyudu, x> 0, (1.8)
0
10\ [ 2
K(x) = 5 (%)‘ /0 e =% ldr, x>0, (1.9)
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Hence, we easily find thdt, (x) is a real-valued positive function where R and an even

function with respect to the index Moreover, it satisfies the following inequalities:
|KV('x)|<KReV(x)7 X > Oa (1.10)
xRV g, () <2R®-1r(Rev)), x>0, Rev#0, (1.11)

wherel'(z) is Euler's gamma-functiofil]. Applying the Hslder inequality to the integral
(1.3) and invoking asymptotic formulas (1.5)—(1.7) with the latter inequalities (1.10), (1.11)
for the weighted functiork ,(x) it is not difficult to establish the following embeddings:

L*(Ry) = L™%(Ry), L*Ry) € LERY), |«/>|81=0,0, f € R, (1.12)
2

L*(R) D Lp(Ry;xdx), 2< p<oo, |of <1——, (1.13)
p

whereL ,(R,; x dx) is a weighted Banach space with the norm
o0 1/p
AN, @y ar) = (fo |f ()7 dx) . 1<p < oo, (1.14)
N Loo(®ysxdx) = €SS SUReR, | f(xX)]. (1.15)

Our goal in this paper is to study the boundedness propertiés, (R ; x dx) of the
convolution operator (1.1) when one of the functions, kais fixed and belongs to the
spacel.*(R.), wherex depends op. For this we will generalize oh ,-case the following
Hausdorff-Young-type inequality:

1 *hllLy®y x dx) S Lo®yx an 1Al Lo, ) (1.16)

which is proved in9,10]. Furthermore, for some values pfelations between norms of
operators (1.1), (1.2) are confirmed by the Young-type inequality[ (¥

S s Al Ly @ysx de) < Cpy gL Ly p®esx d) A Ly Ry x dx) s (1.17)
where
o 1,& 198 M Iz
C/Js“,’,ﬁ = (/O X s Kl”’:ﬁﬂ (X)KOM (X) dx) s (118)

and0<y, <1, y+ <1, Lzlf_m < u<l

In the final section, we prove an analog of the Riesz—Kolmogorov theorem for the
Kontorovich—Lebedev operator (1.2) wheg 2 < oo. Namely, we will prove the following
inequality:

o0 7'5[7 S

T sinht| K [f11P di< — x| f(x)|Pdx, (1.29)
0 2r=1 Jo

which is equivalent to

Y
IKil Az, Resosinhnean) < ——3 1112, Ry xdn)- (1.20)
27 p
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We note, that spacds, (Ry; t sinhntdr), p>1andL(R4; T sinh nt dt) are normed,
respectively, by

00 1/p
NfIL,® ;Tsinharde) = (/o | f(0)|” sinh de) . 1I<p < oo, (1.21)

I f 1| Loo (R, :7sinhrrdr) = €SS SURLR, | f(D)]. (1.22)

We will conjecture that the norm of the Kontorovich—Lebedev operator ([IK2)|| is equal
to —*, where we define the norm as usual by
27r

[|Kizl| = sup ||Kir[f]||Lp(R+;r sinh ntdr)- (1-23)

NNLp @y ixdn=1

As itis known, the product of the modified Bessel functions of the second kind of different
arguments can be represented by the Macdonald formula [4, vol. Il, relation (2.16.9.1)]

e G s
mum«w=iﬂe Ko 2.

u

(1.24)

This is a key formula, which is used to prove the factorization property for the convolution
(2.1) in terms of the Kontorovich-Lebedev transform (1.2) in the sgaeé&) [9,11],
namely

Ki:[f *h] = Kic[f1Ki:[h], T € Ry, (1.25)

where the integral (1.2) exists as a Lebesgue integral. It is also proj&dli] that the
Kontorovich—Lebedev transform is a bounded operator fichiR, ) into the space of
bounded continuous functions di ;. vanishing at infinity. Furthermore, the convolution
(1.2) of two functionsf, h € L*(R.) exists as a Lebesgue integral and belongs*dR ).

It satisfies the Young-type inequality

[Lf * hllpawy) <Nl Lawp Al L2 r,)- (1.26)

However, it is not difficult to verify that in the casg € Lo(R4; x dx) integral (1.2) in
general, does not exist in Lebesgue’s sense (take, for instance

1 ; 1
fu)::T@7”O<x<T

0 if x > 3,
and use asymptotic formula (1.6)). Thus we define it in the form
N
Kilf1= Jim [ Kieraa (L.27)
N—o0 1/N

where the limit is taken in the mean-square sense with respect to the norm of the space
L2(Ry; T sinh tdt). It has been proved (s¢g]) that

Kir: La(Ry; xdx) < La(Ry; © sinhwtdr)
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is a bounded operator and forms an isometric isomorphism between these Hilbert spaces
with the Parseval identity of the form

00 2 00
f © sinh 7z| Kio[ £112 dt = %/ x| f ()2 dx. (1.28)
0 0

The two definitions (1.2) and (1.27) are equivalentf iE Lo(R4; x dx) N L*(R4). The
inverse operator in the latter case is given by the fornfil® = limy_~ fnv(x), where

N .
Fax) = 32/ ¢ sinh e KX g [ 4, (1.29)
s 0 X

and the convergence is in the mean-square sense with respect to the norm (1.14) of
L2(R4; x dx) . It can be written for almost alt € R4 in the equivalent form

xm? dx

fx) = ——/ / © sinh Ko (y)Kic[ f1dy dx. (1.30)

2. Boundedness properties of the convolution operator

We generalize inequality (1.16) by proving the following:

-2

Theorem 1. Letl < p<oo, f € L,(Ry;xdx) andh € Lf%l([Rq). Then convolution
(1.1) exists as a Lebesgue integral for all> 0 and belongs to the spade, (Ry; x dx).
Moreover,it satisfies the following inequality:

||f*h||Lp(R+xdx)<||f||Lp(R+xdx)||h|| = (2.1)

Proof. Indeed, from Hlder’s inequality we have for convolution (1.1) the estim@te! +

p =1
1 2+),2+_W> dudy rlq
2 wy X
I(f % @I < (Zx),, / [ =7
00 0O ,;( u+y? M)
x fo /O ulfa)Pe N h(y)| dudy. (2.2)

Hence we use the formula (see in [4, vol. |, relation (2.3.16.1)])

00 _;(x 142+)'2+ﬂ> du x2y2 (1-q/p)/2
2 uy x _ y 2 2
/ ‘ uilp 2<x2+y2> Kl_"/”<V e ) 22)

0

and we prove that for akk, y > 0

x2y2 (1—q/p)/2
<x2 + yz) Koo (V i 2) SR gp(9). (2.4)
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Indeed, invoking the representation (1.9) we deduce

x2y? (~q/p)/2
(xz n y2> Ki-g/p <\/x2 + y2> = (xy)tma/p21/p=2

9] 2Jr 2
0

oo 2
<(xy)l=a/pa/p=2 / e~ l—a—A=a/p)-1 44
0

2\ 1-a/p
= (xy)t-a/r2a/r=1 (;) Kig/p()

=xPKL ().

Thus by taking relations (2.3), (2.4) we estimate the right-hand side of the inequality (2.2)
as follows:

|(f % h) ()]

1 00 rlq
<302 ( / Kiu)p <\/x2 4 y2> |h<y>|dy)

0
00 00 _l(xu2+y2+ﬂ)
2
X/ / ul fu)|’e R
0 0

1 00 r/q
xIh(y)| dudy <55 ( /0 Ki_q/p)IRO)] dy)

00 00 _l<x142+y2+ﬂ)
2
X/ / ul fu)|’e R
0 0

x|h(y)|dudy. (2.5)

Hence multiplying both sides of (2.5) bywe integrate with respect to € R... Inverting
the order of integration by the Fubini theorem we invoke again (2.2) and an elementary

inequality Ko (‘/u2 + y2> < Ko(y) to obtain
o
/ x|(f *h)(x)|Pdx
0

00 plq poo poo
S(/O Kl—q/p(y)|h(y)|dy> /0 /0 MKO(\/MZ-F)’Z) [fu)|?

00 o) r/q
th(y)ldudy</0 ul f )| du </0 Kl_q/p(y)lh(y)ldy>

« /0 Ko()h(»)]|dy. (2.6)

Hence taking into account that= p/(p — 1) we recall norms (1.3), (1.14) and write (2.6)
in the form
1/p 1-1/p . (2.7)

[1f *hlL, Ry xdo) SL, Ry x ax) A1 All™ =
p(Rysxdx) X p(Rysxdx) LO(R,) L;T%(R+)
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However, it is easily to verify from representation (1.8) th&i(y) < K1—4/,(y). Hence
from (2.7) (cf. embedding (1.12)) we arrive at the desired inequality (2.1). Theorem 1 is
proved. O

Remark 1. Putting in (2.1)p = 2 we arrive at (1.16). Whep = o it takes the form

S Al Loy ixdo) ST Loo®psxan A LR )- (2.8)

Another version of the Hausdorff-Young-type theorem for convolution (1.1) whén
belong to the conjugate spaces (1.14) is given by

Theorem 2. Letl < p < o0, h € Ly(Ry;xdx), f e Ly(Ry;xdx), g =p/(p—1).
Then convolutiornfl.1) exists as a Lebesgue integral for alt> 0 and belongs to the space

L. (Ri;x"dx)with1<r < 2\[,))zq\' Furthermore it satisfies the inequality
S *hllL, @y xrdx) < Crpgll L, @ xan AL, R x dx)» (2.9
where
0 1 1/ r 1/r
Crpa = ( /0 k2% 00K 0] dx) . (2.10)

Proof. Again with Holder’s inequality and employing (2.3), (2.4) we majorize (1.1) as

2 1/p

L[ oa(xleten) dudy
= 3 P
F#M0< 5 (/0 I Oy S5

0

2 1/q

oo roo _f(xend dud
A (55508, g 20

yq/l’

- 1/p
00 xzyz A-p/q)/2
/ (m) K1 _pq (\/x2+y2) lh(»)|Py dy
_ 1/q
00 /32,2 (1—q/p)/2
x(/ ( > Ki_g/p (\/x2+u2)|f(u)|qudu

o \x24u?

1,1 1
<K K O L, @ex o AL Ry do)-
Hence we easily obtain inequality (2.9) with a constant given by the integral (2.10). Due to
asymptotic formulas (1.5)—(1.7) we verify by straightforward calculations that it converges
when I<r < %. Theorem 2 is proved. [J
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Lettingp = g = 2, r = 1in (2.9) we invoke relation (2.16.2.1) frofd, vol. 1] to
calculate the corresponding value of the integral (2.10). As a result we deduce the inequality

s
L AllLs@yix dn S S HlLo@ e dn 11| L@y ox d) (2.11)

which is a particular case of (1.17) whgn=1,f =7y = %
For a fixed functiorh we denote by

1 [ -zl +%
Sh(x,u)=gfo e 2<X : ')h(y)dy (2.12)

the kernel of the following convolution operator:

SnfHx) = /oo Sp(x,u) f(u)ydu, x> 0. (2.13)
0

As a consequence of Theorem 1 we establish boundedness properties of the operator (2.13)
inthe spacd. ,(Ry; x dx), 1 < p<oo. Thus we have

-2
Theorem 3. Letl < p<oo,andh € L%(RJF).Then integral operato¢2.13)is bounded

inthe space. , (R ; x dx) and its norm|| S, || <||h]| p—2 .If, inturn, k(x) is a positive
LP=1(Ry)
function onR,. and e<1+ i,oo),then Spll = Al p—2 .
+andp 75 [1Snll =11 IIL%(R”

Proof. The first part of the theorem easily follows from inequality (2.1). Let us show that
if h(x) is a positive function ofR; andp € (1+ \/% oo), then the norm of the convo-

lution operator (2.13) is equal (]| p=2 . To do this we prove that the calé;|| <
Lt (Ry)

||h||LZ%%(R+) is impossible wherp € <1+ ﬁ,oo). Indeed, assuming thatS,|| < 1,
where

h

o= o
Al p-2
LP=1(Ry)

it follows immediately by virtue of the Banach theorem that the operater I — S, (|
denotes the identity operator) has an inversejR,; x dx), 1 < p < oo. Consequently,

the adjoint operatoA™ = 1 — Sq,, where

SpfHx) = /oo Sp(u, x) fw)du, x>0, (2.14)
0

has an inverse i, (R ; x dx), g 1+ p~! = 1. However, we will show now that the

operatorA* in L,(Ry; x dx) cannot have an inverse since integral equatiérf = 0

has a nontrivial solutiory'(x) = K -2 (x), which belongs taL,(Ry; xdx) whenp e
p—1
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1+ %3 oo ). Indeed, employing the Macdonald formula (1.24) and the norm definition
(1.3) of the spacé.*(R;.) we substitute formally in (2.14) the functidti,—2 (x) to obtain

p—1

o0
/ Spu, x)Kp-2W)du = K p-2(x)
0 p—1 p—1
n—2
for any positiveh(x) € Lﬁ(ﬂ%q). This solution belongs td, (Ry; x dx), if the integral

o0
/ KZ,Z (x)xdx < oo.
0 1

When p = 2 it evidently converges via asymptotic formulas (1.5), (1.7) for the modified
Bessel function. For other valuesméccording to (1.5), (1.6) we see that the latter integral

is convergent wher%p:Lzl')Z < 2. This gives the conditiop € (1 + % 00). So this fact

contradicts our assumption above and we conclude|tsigf| > 1. But from the first part

of the theorem it follows thaff S, || <1. Thus we get|Sy|| = 1 or [|S;|| = [|k]] p-2 :
L7 T(Ry)
Theorem 3 is proved. [J

Let us consider two examples of convolution operator (2.13)7¢10]) with the corre-
sponding kernels (2.12), which are calculated for concrete functiotisfor instance, we
puti(x) = 1 then we calculate integral (2.12) by using representation (1.9) and we arrive
at the following integral operator

oo K1 (x/xz + u2>
VX2 4 u?

-2
Itis easily seen from (1.3), (1.5)—(1.7) thatx) = 1 belongs to the spad_ef%l (R4) ifand

onlyif p € (% o). Consequently, appealing to Theorem 3 via relation (2.16.2.1) fiom

vol. II] we find that (2.15) is a bounded operatoip(R. ; x dx), p € (3, 00) and has a

KfHx) = uf(u)du, x>0. (2.15)

least value of its norm whep < (1 + % oo), namely

el n e(1+ ! )
= p —,00].

-2
Zcosh(%%) V3

When, in turn, we puk(x) = % then calculating the corresponding integral (2.12) and

taking into account, that the modified Bessel function of the ir%jeexduces to

K1/2(z) = e*Z,/Zﬁz

(se€[1, (9.6)]), we arrive at the Lebedev convolution operator [[&fL1])

(Lef)(x) = \/g /OOO i_:u Juf@du, x>0. (2.16)

u
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—x p=2 . .
In this caséi(x) = % belongs to the spadelﬁfl(RJF) ifandonlyifp e (g, 3). Moreover,
using relation (2.16.6.4) from [4, vol. 1l, Theorem 3] we obtain that the Lebedev operator
(2.16) is bounded iiL ,(R4; x dx), p € (3, 3) and we have

[|Lel] = r ! € <5 3>
ell=n/z—— . p - 3]).
2 n—2
cosh(nfp_l> 3

3. Riesz—Kolmogorov-type theorem

In this final section, we study the Kontorovich—Lebedev transformation (1.2) as an opera-
tor, which maps the weighted space,(R;;xdx) into the weighted space
L,(Ry; t sinh it dr) for 2< p <oo. We will show that for I p < 2 this map in general,
does not exist. Finally, we prove an analog of the Riesz—Kolmogorov thef@emvhich
is known for the Hilbert transform il ,. Namely, we will prove inequality (1.19) and
consider least values of the norm constants (1.23) for the Kontorovich—Lebedev operator
(1.2).

The case = 2 has been studied [i@,9,10]. It forms an isometric isomorphism between
the corresponding Hilbert spaces with the Parseval equality (1.28). It has also a relationship
with convolution (1.1) by means of the following Parseval equality[&fL0])

00 TCZ 00
/ 1 sinh 1| Kio[ f1Kiz[h]2 dT = 7/ I(f % h)(x)|%x dx. (3.1)
0 0
However, when < p <ooandf(x) € L,(Ry; x dx) ithas been shown if8] that integral

(1.2) isunderstood as a Lebesgue integral. We will prove that the image of the Kontorovich—
Lebedev operator belongs g, (R, ; T sinh nrd7). It fails certainly when X p < 2. For
instance, we take

1ifog<x<1,
f<x):{0ifx>1.

Thenf clearly belongs td.,(R,; xdx), 1<p < 2. Nevertheless, we find that the cor-
responding value of the Kontorovich—Lebedev transform (1.%1iK,~T(x) dx. The latter
integral is a continuous function with respect@nd behaves a8(e~"*/2) whent — +o0
(cf. [7]). Consequently, integral (1.21) is divergent for this function whefyl< 2.

In order to establish inequality (1.19) we need the boundedness of the Kontorovich—
Lebedev transform as an operator (see (1.15), (1.22))

Kir : Leo(Ry; xdx) — Loo(Ry; 7 sinhzdr).
This result is given by

Theorem 4. The Kontorovich-Lebedev transformatiqi.2) is a bounded operator
Loo(Ry; xdx) — Loo(R4; T sSinhtdt) and its norm is equal t(%.



S.B. Yakubovich / Journal of Approximation Theory 131 (2004) 231—-242 241

Proof. Takingintoaccountinequality (1.10) for the modified Bessel function and definitions
of norms (1.15), (1.22) we deduce from (1.2) the following estimate:

o0
K iLf N ie sinmedsy < 1111 @oondey /O Ko(x) dx
TT
= E”f”LOO(R_,_;xdx)a (3.2)

where the latter integral is equal §due to relation (2.16.2.1) fror#, vol. Il]. Conse-
quently, the Kontorovich—Lebedev transform is bounded fiog(R ; x dx) into the space
Loo(Ry: T sinh iz dr) and its norm (1.23)|K;.|| < 5. However, it attains its least value
by taking f (x) = 1. Indeed, by the same relation (2.16.2.1) fidywvol. Il] we get that the
transform (1.2) is

() fOOK (ydx =Tt
T) = it(x)dx = - ————,
g o 2 cosh(%)

and clearly||g||z...(Ry;z sinh wedr) = g Theorem 4 is proved. [

It is not difficult to find the norm of the Kontorovich—-Lebedev operator wieg 2.
In this case the Parseval equality (1.28) gives the v%leWhen 2< p < oo, the norm

estimate is established by the Riesz—Kolmogorov-type theorem. So, finally we prove

Theorem 5. Let2< p <oo. The Kontorovich—-Lebedev transformatin?) is a bounded
operatorL ,(Ry; x dx) — L,(Ry; t sinh nzdt). Moreover,inequality(1.19) holds true
and the norm(1.23) | Ki-|| < "t

21

Proof. Infact, by the Plancherel-type theorem for the Kontorovich—Lebedev transformation
[7] we conclude that integral operatét; is of type (2, 2). Meantime, Theorem 4 states
that this operator is of typéo, co). Hence by the Riesz—Thorin convexity theorghthe
Kontorovich—Lebedev operator (1.2) is of type, p), i.e. maps the spade,(R; x dx)

into L ,(R4; T sinh nt d1), wherep~—1 = g, 0<0<1. This means that p < oo and we

find

7\’ /m\1-0
||K,-r[f]||Lp<R+;Tsmhm)<(72) (5)  1Fly@ran

()6

XL, Ry xdx) =

21_% ||f||LP(R+;xdx)~ (33)
Thus we easily get inequality (1.19). Furthermore, from (3.3) and (1.23) it follows that

|IKizl| < ="t . Theorem 5 is proved. [J
2 r



242 S.B. Yakubovich / Journal of Approximation Theory 131 (2004) 231—-242

Remark 2. The problem of the inversion formula for the Kontorovich—Lebedev transfor-
mation (1.2) is considered [8]. When p = 2 itis given by relations (1.29), (1.30). But if

2 < p < oo the corresponding relation is a particular case of the main theor®h é&md
reciprocally to (1.2) we obtain

f(x)= lim 2
V=00 a2

o0
[ e - oKWKl fldn x =0,
0
where the limit is taken with respect to the norm (1.14) or exists almost faralD.

Our final conjecture states that the norm (1.23) of the Kontorovich—Lebedev operator is
equal to%. However, it is still an open question for2 p < oo.
2 r
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